If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/9p^2-25=9
We move all terms to the left:
4/9p^2-25-(9)=0
Domain of the equation: 9p^2!=0We add all the numbers together, and all the variables
p^2!=0/9
p^2!=√0
p!=0
p∈R
4/9p^2-34=0
We multiply all the terms by the denominator
-34*9p^2+4=0
Wy multiply elements
-306p^2+4=0
a = -306; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-306)·4
Δ = 4896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4896}=\sqrt{144*34}=\sqrt{144}*\sqrt{34}=12\sqrt{34}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{34}}{2*-306}=\frac{0-12\sqrt{34}}{-612} =-\frac{12\sqrt{34}}{-612} =-\frac{\sqrt{34}}{-51} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{34}}{2*-306}=\frac{0+12\sqrt{34}}{-612} =\frac{12\sqrt{34}}{-612} =\frac{\sqrt{34}}{-51} $
| t+6t-26+t+8=0 | | 2(11^x-7)-5=113 | | (18x^2+27x+13)=(3x+3) | | -4(-5w+4)-5w=5(w-5)-6 | | X-20=4-3x | | x/6+5=23 | | 0=-16t^2+80t+1600 | | -15n+16=-13n-2 | | 11=1/6x | | x/6-2=28 | | 1/3x-2/3=-3x-4 | | 9+2x-5=3x-3 | | 7w+3+15=60 | | 3/5x-4=14 | | 1/2+y=3/7+2/5 | | -3/u-6=-4 | | 7.6=f+.32 | | x-3.4/7=2.8 | | 4y-3(y+2)=24 | | 2x-23=61 | | 4(2-x)-3(x-5)=7 | | 9(n-8)=9n+5 | | -4b+2=4 | | 3/4+1/5-w=6/7 | | 11x-18=13x+22 | | 5x+1+7=9x | | (5+z)(2z+9)=0 | | -4x+6(6-2)=7x-36 | | X^2-3x-10=44 | | 6x-15=6x-2+10 | | n/10=3.2 | | x=x^2-2x-28 |